1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
| import pandas as pd import numpy as np from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error,r2_score
data = pd.read_csv('usa_housing_price.csv') print(data.head())
fig = plt.figure(figsize=(10,10)) fig1 = plt.subplot(231) plt.scatter(data.loc[:,'Avg. Area Income'],data.loc[:,'Price']) plt.title('Area Income VS Price')
fig2 = plt.subplot(232) plt.scatter(data.loc[:,'Avg. Area House Age'],data.loc[:,'Price']) plt.title('Area House Age VS Price')
fig3 = plt.subplot(233) plt.scatter(data.loc[:,'Avg. Area Number of Rooms'],data.loc[:,'Price']) plt.title('Area Number of Rooms VS Price')
fig4 = plt.subplot(234) plt.scatter(data.loc[:,'Area Population'],data.loc[:,'Price']) plt.title('Area Population VS Price')
fig5 = plt.subplot(235) plt.scatter(data.loc[:,'size'],data.loc[:,'Price']) plt.title('size VS Price')
X = data.loc[:,'size'] y = data.loc[:,'Price'] X = np.array(X).reshape(-1,1) LR_1 = LinearRegression() LR_1.fit(X,y) predict_1 = LR_1.predict(X) print(predict_1)
MES = mean_squared_error(y,predict_1) R2 = r2_score(y,predict_1) print(MES,R2)
figer_result_1 = plt.figure(figsize=(10,10)) plt.scatter(X,y) plt.plot(X,predict_1,'red')
X = data.drop(['Price'],axis=1) LR_Multi = LinearRegression() LR_Multi.fit(X,y) multi_predict = LR_Multi.predict(X) MES = mean_squared_error(y,multi_predict) R2 = r2_score(y,multi_predict) print(MES,R2)
figer_result_multi = plt.figure(figsize=(10,10)) plt.scatter(y,multi_predict) plt.show()
X_test = [65000,5,5,30000,200] X_test = np.array(X_test).reshape(1,-1) print(type(X_test)) predict_result = LR_Multi.predict(X_test) print(predict_result)
|